dtmcbd
Returns the transition probability matrix for a discrete
birth-death process over state space .
For each ,
b(i)
is the transition probability from state
to , and d(i)
is the transition
probability from state to .
Matrix is defined as:
$$ \pmatrix{ (1-\lambda_1) & \lambda_1 & & & & \cr \mu_1 & (1 - \mu_1 - \lambda_2) & \lambda_2 & & \cr & \mu_2 & (1 - \mu_2 - \lambda_3) & \lambda_3 & & \cr \cr & & \ddots & \ddots & \ddots & & \cr \cr & & & \mu_{N-2} & (1 - \mu_{N-2}-\lambda_{N-1}) & \lambda_{N-1} \cr & & & & \mu_{N-1} & (1-\mu_{N-1}) } $$
where and are the birth and death probabilities, respectively.
See also: ctmcbd
birth = [ .2 .3 .4 ]; death = [ .1 .2 .3 ]; P = dtmcbd( birth, death ); disp(P) 0.8000 0.2000 0 0 0.1000 0.6000 0.3000 0 0 0.2000 0.4000 0.4000 0 0 0.3000 0.7000 |